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19. ABSTRACT
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"} In this report['we develop an electromagnetic model for three-dimensional inversion of eddy-
current data, an inversion algorithm based on the conjugate gradient technique, and a special
purpose computer that we estimate can execute this algorithm in times comparable to high
speed main-frames. This computer has a pipeline architecture and is designed around our parallel
implementation of the inversion algorithm and makes use of high-speed DSP chips. The inversion
process achieves a higher performance measure when more than one data set is inverted. The
sequential order of the inversion scheme restricts the number of active elements in the pipe for
a single problem. When more than one inversion problem enters the pipe, then more than one

element could be active to improve the overall performance of the system. ™)
o T e - -

‘-~ The basic electromagnetic model starts with the integral equations for electromagnetic scat-
tering, which are then discretized by means of the method of moments. This gives us the funda-
mental inversion model, which is then solved using the conjugate gradient algorithm. In order to
accomplish the three-dimensional inversion, we acquire data at a number of frequencies; there.
fore, our inversion process is called a multifrequency method. The choice of frequencies, and the

number of frequencies to be used, depend upon the conductivity of the host material, and the
depth resolution sought. ", -, ) et
LT -

The method of conjugate gradients has a number of attractive features for our purposes. Chief
amcag them is that it allows a large problem to be solved efficiently, and, because it is an iterative
algorithm, it allows us to take advantage of the special Toeplitz structure of the discretized model.
We also derive an algorithm that allows us to constrain the solution, use preconditioning and a
Levenberg-Marquardt parameter. Preconditioning is often useful in improving the convergence of
the conjugate gradient algorithm, and the Levenberg-Marquardt parameter is needed to stabilize
the solution against the effects of noise and modeling inaccuracies.

The inversion algorithms may require a priori information about the flaw regions. The infor-
mation can be used to concentrate the inversion efforts on regions of interest rather than unflawed
regions. Statistical pattern recognition and computer vision techniques have been examined to
achieve this goal. The purpose of applying statistical pattern recognition techniques, is to detect
the flaw regions and the background regions in the spatial domain. In addition, a graphical tool
can be used to analyze the raw data when used as input features, and evaluate the classifiability
of the measurement (any two features).
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CHAPTER I
DEVELOPMENT OF THE MODEL

1. Introduction

In this chapter we describe mathematical models that were developed to be the basis
for our inversion algorithms. These models make use of a bulk conductivity model of an
anisotropic material. The bulk conductivity approach and the associated Green’s functions
for a flat plate are described in Sabbagh Associates’ report SA/TR-3/88. Here we develop
direct and inverse models based on a whip source probe and a ring source probe. In
laboratory tests these probes have been used successfully to detect flaws and so we develop
these models to allow for the reconstruction of three-dimensional flaws.

2. Whip Source Direct Model
(a) Computation of the Incident Fields Due to a Whip Source

The infinitely long ‘whip’ is oriented parallel to the y-axis, with z-coordinate equal to
zo and z-coordinate equal to zp. Hence, we have for the current density

Jo(z,y,2) = Lb(z — z0)é(z — 20)ay, —00<y<o0. (1)
The Fourier transform of J is given by

Jo(ks, ky,2) =a,8(z — 20)% // &z - zo)el (ko= V) dzdy o)
—o 2

In ik
=a,§:—re"" °8(ky )6(z — 20).
We have, from (15) of NSWC TR 85-304:

&:(2) =/§31(z|z') - Jo(2')d2'

In . -
=a, E%e"" *0§(ky)G21(2|20),

(3)

where the tilde denotes a function of (kz, ky), and G21(2|20) is the external Green’s func-

tion. From here on we suppress the subscripts on the Green’s function and replace them
with the superscript, ‘(e)’.

Hence, the electric field at level 2z, within the slab, is given by

~ ) ~(e
Boe(2,20) =5 =6(ky)G13 (2120)

(4)
~ In ~(e
Boy(2, 20) === 8(ky )G33 (21 0),
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where the subscripts refer to a 4 x 3 tensor (because there are four transverse field com-
ponents in &, and the applied current can point in three directions.)

Upon taking the inverse Fourier transform of (4),we get

oo
Boa(o0,2) =g [ G(ke, 0,5, z0)e w0,

-0

=Foz(z0 — 2,0; 2, 20)

Eoyy(z,y,2) =-270r'_/ Gg;)(k,,O; z,z9)e" ke (z=20) g
=Foy(z0 — 2,0; 2, 20).
These are the functions that are to be used in the next section.
(b) Computation of the Scattered Fields Due to the Whip Source
We will analyze the problem shown in the figure:
Field Point
(z.v.2)
[ Anomalous Current /
MAMMAAAALAA z=2
J(-)
COMPOSITE SLAB
We have, from (15) of NSWC TR 85-304:
&:(z) = /éu(zlz') - J(@)(2')d2', (6)

where the tilde denotes a function of (k., k,); i.e., (6) is in the Fourier domain. é;z(zlz')
is the “internal Green’s function”.

We assume that the only significant currents lie in the transverse plane; i.e., JGe)(2) =
J¥a, (') + JS")a,(z'). From here on we suppress the subscripts, 12, on the Green’s
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function and understand that this is the internal Gr. *'s tunction. We also suppress,
for the moment, the independent variable, z', and understand that J(®) refers ic he
anomalous current at some depth z'. Hence, the electric fields at the sensor level z due to
the anomalous current at level z' are

E, =5nﬁ‘) + 512‘7,(,“)
E‘y =Gn T + 522-7(,,“),

(7)

where the subscripts refer to a 4 x 3 tensor (because there are four transverse field com-
ponents in &, and the anomalous current can point in three directions).

We are really interested in B, at the sensor. According to (10)(b) of NSWC TR
85-304, we have
k

X

E: = F'O-ﬁz = ""‘Tsz + fﬁy) (8)
which, according to (7), implies that
5 ky = ~ ks~ a ~ a
B, =- '5[@11-71“) + G J{V] + U[Gzlﬁ '+ G T
~ ~ ~ ~ 9
~kyGi1 + k2621 \ 570y , [ —kyG12 + k:G22 )\ 74) (9)(e)
= ” Jz + ” Jy .

For completeness we write the other two components of B:

E: =#0531 j;(,“) + #05321‘3')

- ~ - ~ (9)(b)
By =poGaa I + yoan,(,“)o
Let’s call
Izzz = Iloé':u, }z::y = Fogsz
Iiyz = F’OGiLr - I!'yy = F'OG4?~ - (10)
H,, = (‘-kyGn + kG2 )/w) sz = ("kllG12 + k’Gn)/w’
Then, from (9)(a):
m .
B.(z,y,2) = / / Hyo(ke, ky; 2, 2' )2 ke, ky Yo~ ko=t R V) g _dk,
T roo (11)
+ / / Hoy(ks, ky; 2, 2') T80 ke, by eI 5omtbo¥) gk dke,,
or, in convolution form:
Bz(z’ v, z) =_'1_3' // sz(z ~&y—miz, zl)ch)(E’ 'l)dfd'l
n* JJeoo (12)

+ -47% / /_ :H.,(z =&,y - n;2,2')J{*) ¢, n)dEdn.
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In order to compute emf’s, we integrate B, over the appropriate sensing coil. This
computation should be done in (11), because it is very easy to integrate the exponential in

(2,9). The result is to introduce new H functions for the emf’s, and these functions can
then be transformed for use in the convolution integrals of (12), et seq. (The dcnvatlon

of these H functions is described more fully in Appendix A of Chapter IV; see (A.33), ¢
seq.)

Let the conductivity of the flawed region at level z' be the scalar function o{f)(z,y, 2')
(for a void region o{f) = 0). We are assuming, therefore, that the flaws are isotropic.
The incident field at z' is Eo(z,y,2') = Eo:(2,y,2')a: + Eoy(z,y,2')a,. If the source
of the incident field is an infinitely long ‘whip’ oriented parallel to the y-axis, with =z
coordinate equal to g, then it is straightforward to show that Ey.(z,y,z') = Fo.(gq -
z,0,2'), Eoy(z,y,2') = Foy(q — 2,0,2'), where F,, and Fp, are given in (5). The zero in
the second argument of the F’s implies that the incident field is independent of y, as we
know.

The anomalous conductivity tensor is the difference between the flaw conductivity
tensor and the host conductivity tensor:

0'(!) 0 0 011 0Oy2 0
=10 oN o |- o2 032 0 |.

0 0 U(f) 0 0 Oss
Hence,

JEN(z,y) =0((2,y)Foz(g — 2,0,2') + 0{3)(z,y) Foy (4 — 2,0, ')

13
JS‘)(z,y) -61,)(2,11)1"0:(9 -2,0,2')+ a'(‘)(z y)Foy(g - 2,0,2'), (13)

and we note that agz) = 0,2, which is known. Of course, if we work in the principal-axis
system, then 0,2 = 0.

When this is substituted into (12) we get

B,(z,¥,2) =2%,- / /_ :H,,(a: — &,y ~m 2,2 )Fos(q - £,0,2')0 (¢, 7)dedn

s [ Btz - 6y =miz 0oy (a - £,0,2)03) € mdtdn (14)

+Z%='/ o [Hie(z — &y — i 2,2')Foy (g - £,0,2')

+ Hyy(z — &,y — 7 2,2 ) Foe(g ~ £,0, 2)) 0'9(€, n)dt dn.

Because we sense the field at the same location as the whip, z = ¢, we can replace ¢

I-4
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by z in (14) and get

Bi(z,v,2) =417 //_ Tu(z — £,y — m;2,2' )0y (€, 1)dedn
+Z;1'r'i //_sz:(= — &,y — i 2,2")03)(€,m)dedn (15)
+z;1,? /[-an(z - &y - m;z,2')083) (€, n)dedn,

where ,
Tn(z - f)y ~Mz2 ) = 8:(2 - f»y -2, Z')FOz(Z - £a 01 Z')
Toa(z — &,y —m;2,2') =Huy(z — €,y — 03 2,2')Foy (2 - €,0,2")
le(z - f)y -2, z') =sz(z - f,y -m z,z')Fo,(z - E’O) z')
+ Htv(z - E’y -1n2, z')FOZ:(z - Ea Ov z')'
The last integral in (15) is known, because a§;’ = 012. Indeed, if we are operating in the
principal-axis system of the host conductivity tensor, then oy = 0.

(16)

For three-dimensional flaws, we need only perform a spatial integration of (15) with
respect to z'. We consider the slab to be partitioned into N, discrete ‘layers’ and consider

5*) to be constant with respect to z' for each layer. The transfer function Tl(;‘ ), for

example, for a layer bounded by 257 and 257 is

)
Tz ~ &,y — 03 2,20) = f(_) Hyo(z — 6y — ;2,2 Voo (z — §,0;2,2')de'  (17)
En

The total field due to flaws in a slab, then, is the sum of the fields due to flaws in each of
the ‘layers’. This will be fully explained in Section 4.

Equation (15) is the same equation that we derived for reconstructing 5*) using an
infinite current sheet for excitation. The only difference is that for the whip the transfer
functions Ty;, T32, and T}, consist of the product of two arrays, rather than the product
of one array (H,.,or H,,) and a scalar (Ey,;,or Eg,), as was the case with a current
sheet excitation. Clearly, if the excitation source is bounded in the y-direction, then
the transfer function is the product of two two-dimensional arrays. Hence, it appears
that we can apply all of the inversion algorithms that were developed for excitation with
infinite current sheets, but that there must be a little more pre-processing to generate the
appropriate transfer functions.

I-5




3. Ring Source Direct Model
(a) Computation of the Incident Fields Due to a Ring Source

The source is a single filament ring parallel to the slab workpiece. The ring has radius
ro and is centered at (zo,¥o, 20). The current density is

Jo(2,vy,2) = Iob(z — 20)(—a. sin 6 + &, cos )5(r — 7o) (18)
The transform of J is given by
= Io oo . (ke +kyy)
Jo(ks, ky,2) = 6(z — 20)4—”-; // (—a-sinf + a, cos §)6(r — ro)e’ Vidzdy (19)

From Appendix C of NSWC TR 85-304, this transform is

To(key by 2) = P00 0D g o), 4 0, ) (20

2n k,
where k. = /k.? + k.

From (15) of NSWC TR 85-304, the fields due to this current ring are

&(z) = [GO(zlz0)- Jo(zo)dzo

on"o5(z - zo)

= GOalz) - LTS

Jl(k,ro)(-a,% + .y{f) (21)

where the tilde denotes a function of (k.,k,) and G(*(z|z) is the external Green’s
function which is a 4 x 3 tensor (because there are four transverse field components in
€; and the applied current can point in three directions).

The electric field at level z within the slab, then, is

Boe(z, 0) = 22700 = 20) 1 1 o) [k, G 2l0) + oG53 (120)]

2k,
Boy(a, 20) = R 20) g 1) [k, G001e0) + B GRele)]  (22)

Taking the inverse Fourier transform of (22) we obtain
EOs(zsy’ z) =
JIO"O // Ji( k""’) [ kagcl)(kzvkv) +k, G )(k,,k,)] ~ike(zo-=)thy (v -V gk _dk,

= Fog(zo—z yo—v,z Z0)

EW(‘:V’ z) -
JIoro / / J1(k'ro)[ b, GO (ko k) + kG (ke kv)] e-ilke(zo-e} bl dk_dk.
= Fo,(zo - 2,% —¥;2,2) (23)
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(b) Computation of the Scattered Fields Due to the Ring Source

The computaiion of the scattered fields due to the ring source is identical to that of the
whip source (€ :ction 2(b)) through (12). For the ring source, though, the incident field is
not indep< .dent of y. Hf the ring source has z coordinate g and y coordinate r, the incident
electric fields are Eo,(z,y,2') = For(q—z,r—y,2') and Eo (2,y,2') = Fo,(¢—2,7—y,2'),
where Fy, and Fy, are given in (23). If we choose z and y to correspond to the principle
directions of the host material, then ¢,; = 02; = 0 and the anomolous currents are

JNz,y) = o{PFu(g-2,r-y,7)
I z,y) = 0 Fo(g—2,r—y,2) (24)
When equations (24) are substituted into (12), we obtain
B, (=, y, z) =
4,,, / / w(z = &y = 12,2 Foula - &7 — m,2)al(¢, m)dédn

+ g [ Bale -6y -2 2)Fole - 6r - 0,20 n)dkdn  (25)

4x?

The sensor is a single filament loop. If the source ring remains stationary while the
sensor loop is moved around, then the electric fields do not change as the sensor loop is
moved. In this case, Fy, is a function of { and n only and (25) becomes

Bue,y.s) = g3 [ [ Hele = &y = mFoul€omof(€ mdedn

LI (@)
t o //_“ Hy(z ~ &y — m)Foy(€,n)ozs ({,n)dddn (26)
So, B, is computed by
B, = A.0.+A,1, (27)
where

n:(z)y) = F%(z’y)a{:)(z)y)
O,(z,y) = Folz,¥)0%(2,)

On the other hand, if the source ring and the sensor loop always move together (and
are concentric), then ¢ = z and r = y. In this case, (25) becomes

Bl(z) Y, z) 412 // ..(z -— e,y ﬂ)FOs(z _ e’y 'I)"u)(f,'))dfdﬂ
t / [ Hee - 6y - )Fulz — &y = n)ol(En)dedn  (28)
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and B, is computed by

B, = Tuf’( D+ Tzz-(a) (29)
where
Tll(z)y) = Hlt(z’y)FOS'(z)y)
Tzz(z, y) = Hlu(zr y)Fov(z:y)
‘inally, if the source ring and the sensor loop move together but are not concentric,

then the offset must be considered in (25). If the offset in the z direction is a and the
offset in the y direction is b, then equation (25) becomes

B,(=, y,z) =
4", // Ho(z - €,y -1;2,2)Fos(z — £ — a,y = — b, 2')o{?(€, n)dédn
T / | Hulz = &y —12,2)Fo(z - € - 0,y ~ 1 — b, 2)oi) (¢, n)dedn (30)

and B, is computed by

B, = T,5\9 + T5sl® (31)
where
Tis(2,y) = Hue(z,9)F ) (z,y)
Tos(z,y) = Hu(z,9)FS ) (z,y)
and
(o!f)(z,y) - ej(k.c+kyb)ﬁv°=(z’y)
Fé:”)(z,y) = ej(k.a+k,b)pov(z,y)

For three dimensional flaws, the transfer functions must be integrated with respect
to 2'.




4. Whip Source Inverse Model

(a) The Discretized Integral Equation

We assume that we are operating in the principal-axis system, so that the last integral
in (15) vanishes. If the whip is oriented along the y-axis, then we know from theoretical
considerations that the electric field, Fo-(z — £,0,2'), vanishes. Thus, (15) reduces to an

integral equation for a single unknown, the anomalous conductivity, agg)(£ ,M,2') at layer
2"

B:(Z,.% Z) = 4—11;3/./— T22(z - f)y - 7’;3)2')0(“)(6, 72 ')dfdﬂ (32)

This is the contribution of the layer that is located at z'. The net contribution of all
layers is given by the integral of (32) over the flawed region:

B = [ gz [[ TGty =000 n,)dgan} o

flaw

- -]
= / { / / T(k,,k,,,z')a“)(k,,k,,z')e-i(*-=+'=~v>dk,dk,}dz'.
flaw -0

From here on we will suppress the sensor z-coordinate, because it is fixed; we also suppress
the subscripts on T and o(®).

(33)

Next, expand the unknown conductivity in a series of pulse functions (defined on a
reg.lar grid of spacing (6z, 8y, 62)):
N. Nl Ns
o{)(2,4,2) =Y )" Y oimaPi(2/62)Pm(y/6y)Pu(z/62), (34)

=0 m=0 n=0

where the {oimn} are real-valued, positive constants. Any other functions that are defined
over this grid, such as the sinc functions, could work as well; the pulse functions, however,
and functions derived from them by convolution, are particularly nice.

The Fourier transform of (34) is

N N’ l
(ks  ky,2) = 6”5” Z T Gimnette(H43/2)6e iky (mt1 /208y
0 m=0n=0 (35)
Sln(k=5:c/2) sin(ky6y/2)
=l kg2 ) TE/2),

and when this is substituted into (33) we get

z . o N ® sin(k 6z sin(k, &
Blz,y) = ° 5”2 PIPIL N / /_ T ks k) lsfs:/f))( :,zy%”)

=0 m=0 n=0

(36)
e~ Ilke (==(1+1/2)52)+ ky(y—(m+1/2)0) g, _ dk, .

1-9




T )k, ky,w) is the Fourier transform of

e

Tz(;)(z -f,y—'l;w) = ny(z —fyy"n;w’z')FOy(z —f,O;w,z')dz', (37)

zs." )

which was derived in (17). We are explicitly showing the dependence of the transfer
function on frequency, in anticipation of the multifrequency model for inversion.

We take moments of (36) by multiplying by “testing functions”, and then integrating.
For testing functions we will use the same pulse functions, Pr(z/6z), Pp(y/6y), that were
used in the expansion of the unknown (thus, this is Galerkin’s variant of the method of

moments). The integration on the right-hand side introduces another Fourier transform,
so that the result is

Biu = / / Py(2/62) Pur(y/6y)B(z, y)dady

_ (bzby)? N, Ny N, o _ sin(ke52/2) 2 sin(k,59/2) 2 (38)
T 4y gggalmn/[wT( )(k:,ky)( k,52/2 )( k,gy/2 )

e~ ilke S L=+ ky by (M-m)] gt g,

This equation can be written as the sum of Toeplitz operations

Nl N. Nl

Bim =Y Y Y TONL -1, M — m)oimn, (39)

n=0 [=0 m=0

where the two-dimensional Toeplitz matrix, T(™), is given by the integral in (38). This is
the discrete version of the integral equation, (33), and is the basis of our inversion method.

(b) The Multifrequency Model

Equation (39) consists of (N; +1) x (N, +1) equations in (Ng +1) % (N, +1) x (N, +1)
unknowns. Hence, we need more equations. The easiest way to generate these equations
is to repeat (39) at a number of different frequencies. This is easy to do in the lab (where
we must measure B at these frequencies), and on the computer (where we generate a new
transfer function, T, at the same frequencies). This approach is plausible because the
anomalous conductivity is assumed to be independent of frequency. Thus, assuming that
we use Ny frequencies, we have

Bi=Th,®0y+---+T1N, ®0N,
(40)
BN’ =TNI.1 oy +-- +TN’,N, ®UN.-

I-10

—\_




Each of the B’s in (40) is a (N:+1)x(Ny+1)-dimensional data array, the subscript denoting
the frequency at which the data is taken. The operator ® denotes the two-dimensional
Toeplitz operation

N. N,
Tyn®0on=)_ Y TCNL -1, M —m;f)oimn. (41)

{=0 m=0

We write (40) in a block-matrix form, in which the real and imaginary parts are
separated

- - - m(R R)
B® P . TR
(”) R) R o
BN, _ TI(V],I i TI(V,?N, . 42
g | =0 . B (42)
1 1,1 1,N, on,
n 7 F
| BN! J L I(Vl),l e T(N’),N. 3

Equations (40) or (42) are our basic system of discrete equations, and constitute the
‘multifrequency model’ for the whip source. These equations may contain several thousand
unknowns, so we must use efficient methods of inverting them. In Chapterll we will apply

the method of conjugate gradients, together with the Fast Fourier Transform (FFT), to
accomplish this task.

The question arises as to the best number, Ny, of frequencies to use, and what is the
optimum range of frequencies. Generally, this can be answered by trial-and-error, with
the following ideas as a guide. Least-squares methods, such as the conjugate gradient
algorithm, often work better with overdetermined systems, because the variance of the
error is reduced as the number of equations increases, for a given number of unknowns.
Hence, we would like Ny to generally be much larger than N,. It is time consuming,
however, to generate too much data, so there is a trade-off that can only be determined
by conducting numerical experiments with typical problems.

The same can be said in determining the frequency range, but we know intuitively, if
for no other reason, that we should use as broad a frequency range as possible. We can be
a little bit more definite here, and rely upon the phenomenon of skin effect to guide us. If
we want a resolution of §; in depth, then our upper limit of frequency should produce a
skin depth that is smaller than §,, though, as we will see in Chapter III, we have gotten
good results with simulated data at lower frequencies.
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5. Ring Source Inverse Model

The inverse algorithm developed in the previous section for the whip probe is equally
applicable for the ring probe. For the whip probe, we noted that if the grid was oriented
parallel to the principle axes of the workpiece, ag';) = 0 and the third integral in (15)
vanishes. Also, since the whip is also oriented parallel to the y axis, Fo. = 0 and the
first integral in (15) vanishes. Hence, (32) includes only the second integral. For the ring
probe it is still true that we can choose to orient our reference grid parallel to the principle
axes of the workpieces and so we can eliminate the third integral in (15). However, the
first integral must be retained. The baszc mversxon equation for the ring probe, then,
involves T}, and au) as well as T3; and 0'3, For isotropic materials, ai,’ = ag,’ and the
transfer functions can be combined. For anisotropic materials, we can either treat the two
principle conductivities as independent unknowns and double the size of the problem or
we can assume a constant ratio for the conductivities and combine the transfer functions.




CHAPTER II
APPLICATION OF CONJUGATE GRADIENTS

1. Introduction

The discretized system of equations, (I-40), which resulted from the application of the
method of moments to the operator equations in Chapter I, will, in general, have a large
number of unknowns. In subsequent chapters we demonstrate some problems with 4000 to
10,000 unknowns. In addition, we found that this system has a very special structure; it
was Toeplitz in two of the three dimensions. This means that we should apply a solution
technique that can accomodate a large number of variables, while, at the same time, taking
advantage of the special structure. This suggests the use of iterative techniques, such as
the conjugate gradient (CG) method.

We have successfully applied the CG method to a number of problems involving volume
integral equations in nondestructive evaluation [1-3]. Much of the rest of this report deals
with the application of this method to three-dimensional inverse problems.

In this chapter, we will simply sketch the important features of the CG algorithm;
references [4-6] should be consulted for further details on the method.

2. The Conjugate Gradient Method

Let us write the complex vector-matrix equation (I-40) as the operator equation

Y= AOX, (1)
where
B; 1
Y = ) (2)
By, .
o1
o, ]
and
Ty -+ TNyn, oy
AoX = : © [ : ] . (4)
Inya -+ Twy N, oN,

Keep in mind that each of the B’s and o’s is a two-dimensional array, say of dimension
32 x 32, and each T; ; in (4) is a two-dimensional Toeplitz matrix, T; j(I— L,m — M). I,m
index the ‘row’ in each of the two dimensions, while L, M index the ‘column’ of each
dimension.
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We will need the adjoint operator, .A*, which corresponds to the conjugate transpose
of the block-matrix in (4):

TII,{I Th}/I;,l Bl
AoY =] : ; @[;]- (5)

H H
v, TN,N By,

T’_’, is the Hermitian transpose of the two-dimensional Toeplitz matrix T; ;; i.e., Tfﬁ(l-—
Lym—-M)=T:,(L~1,M —~ m), where * denotes the complex-conjugate. The operator
formalism is precisely the same if we use the real system, (I-42), except that the Hermitian

transpose is replaced by the ordinary transpose in defining the adjoint operator in (5).

We remind the reader that the © operation that appears in (4) and (5) stands for the
sum of a number of two-dimensional Toeplitz operations, as in (I-40).

The conjugate gradient algorithm starts with an initial guess, Xy, from which we
compute Ry =Y ~ Ao Xy, P = @y = A* o Ry. In addition, we have a convergence
parameter, . Then for k = 1,..., if Test = ||Ri||/||Y|| < ¢, stop; X is the optimal
solution of (1). Otherwise, update X; by the following steps:

Sk = A o Pk

_1Qu-1l?
AT
Xi=Xia+arPy
Ry = Ry—1 — apSi (6)
Qk = _A‘ (o] Rk
b = "Q""2

1Qe-a?

Pryy = Qr + bi P

comment (1): The algorithm terminates at the Mth step when Qp41 = 0, so that
Xum+1 is the least-squares solution of Y = Ao X. The vectors Qo, @1, Q3,..., are
mutually orthogonal, as are the vectors, S;, Sz, Ss,.... In addition

H 0, ifj <k
i b= { lQxll?, otherwise.

comment (2): This suggests that we monitor the iterates {Q+} for loss of orthogonality,
and restart when the condition IQf Qr+1] 2 e;Qf_,_,QH; is satisfied, where ¢; = 0.2
(say). When this occurs, we set by = 0 in the last line, and then continue (i.e., we restart
with a pure gradient step).

comment (3): Allen McIntosh, Fitting Linear Models: An Application of Conjugate
Gradient Algorithms, Springer-Verlag, 1982, gives an alternative expression for b;:

by = QY (Qr — Qr-1)
YT IQealE
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which seems to produce Q;’s that are more orthogonal, when using the criterion of com-
ment (2). This definition requires, however, that an extra array to store Qx_; be made
available. This is no problem if we monitor for orthogonality for the purpose of restarting,
because that array is required anyway.

The convolution and correlation operations that are a part of A and A* are evaluated
by using the FFT, as described in Appendix A. This, together with the fact that the
storage requirements are reasonably modest, are the reasons why the conjugate gradient
algorithm becomes attractive for large problems in our model.

3. Conjugate Gradients with Constraints

The conjugate gradient algorithm that was just described does not constrain the
solution. In solving an inverse problem, we often need to constrain the solution in order
to get meaningful solutions. Hestenes [6, Chapter III] presents algorithms that involve
general linear inequality constraints (such as bounds on the solution). We show one such
algorithm, the active set method, using Hestenes’ notation.

The problem is to minimize the quadratic function,
F(z) = -;-zTAz — Tz + Co,
on the set, S, of all points, z, satisfying a set of inequality constraints
gi(z)=wlz—k <0 (i=1,..., M) (7)

We assume that A is N x N and symmetric; later, we will consider the more general case
that can be solved using least-squares.

A special case of (7), which will be of interest to us, are the bounds
< <d (i=1,...,N).
This can be put into the form (7):

gi(z) = —z'+ ¢ <0

i g . (8)
gi+n(z)=2z' =& <0 (i=1,...,N).

Hence, M = 2N; u® in (7) is the unit vector pointing in the negative ith-coordinate
direction, for i = 1,...,N, and in the positive (i — N)th-coordinate direction, for ¢ =
N +1,...,2N. These vectors, of course, are the outer normal vectors to the feasible
region, S, which, in this case, is a cuboid whose edges are parallel to the coordinate axes.

(a) CG-Algorithm for Minimizing F on § [6, p. 224]
Step 1. Select a point z; in S. Compute
r=-F(z;)=h-Az;, ga=gi(z.) (i=1,...,2N).
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If »;, = 0, stop; algorithm terminates.
Else, let I be the set of indices, i, such that g;; = 0 (the ‘active set’), and go to Step 2.

Step 2. If I is empty, i.c., no constraints are active, let H be the identity matrix, and go
to Step 3.

Else, let H be the nonnegative symmetric matrix that annihilates the vectors, w;, 1 € I.

comment:Note that if the first N constraints are active, or the last N, then H is the
gero matrix, because that is the only matrix that jointly annihilates all of the coordinate
vectors. This is the case when z is at a vertex of the feasible region (which corresponds to
a corner of the cuboid). In general, the columns of H are orthogonal to the normal vectors
of the surfaces that intersect to form the part of the cuboid on which z lies. (Consider the
case in which z lies on a face of the cube, or on an edge.) It will be quite apparent how
we apply H, so that no matrix multiplies will be involved.

If H =0 go to Step 5, with z; playing the role of z441.
Else go to Step 3.
Step 3. CG-subroutine. Set

py =7 =Hry. (a)
comment:If H is not the identity matrix, then when it operates on a vector it merely nulls
certain components. Thus, the resulting vector lies in the constraint subspace in which z

is located. This means that the correction vector, p, lies in the constraint boundary, if z
starts there.

Starting with k£ = 1 compute

sv=Apr, cr=piri, di=pisk, Gr= %, (%)
0 1el
w={rp 151 (©
Thyr =Tk +akPr, Gik+1 =gk +argie (5 =1,...,2N). (d)
If for some j ¢ I, g;x+1 2 0, go to Step 4. (e)
Else

Tht1 =Tk —Qkdk, Ta41 = Hraqr. (f)
If fx41 =0, or k = N, go to Step 5. (9)

Else -
Pr41 = Frpr + bapr, ba= —%ﬂ- (h)

Replace k by k + 1 and go to (b).
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Step 4. Scale back to the boundary of the feasible region and update the active
set. Let J be all indices j ¢ I, 3 g; 141 > 0. Let @; be the smallest of the ratios

gk .
Ajp = —— €J.
7 i’

Reset

Zy=zp+arpx, T1=h-Az;, gj =gjr+argx, (j=1,...,2N).
Update the active set by adjoining to I all indices j ¢ I, 3 g;1 = 0. Then go to Step 2.
comment: Instead of scaling back to the boundary along the conjugate direction, we can
return to the boundary along the orthogonal direction from the current estimate point.

This seems to speed up the algorithm.

Step 5. If ri4; = 0, stop; algorithm is terminated.

Else select shortest v of the form

V="rTryy — Zw;y,-, summed for all : € I with y; > 0. (2)

comment:[t is easy to do this because the w; are unit coordinate vectors. The y; are
celled either Lagrange multipliers or components of the dual vector.

i v = 0, stop; Kuhn-Tucker conditions are satisfied, and algorithm is terminated at
minimum point of F on S.

Else, choose a > 0, such that
girt1+avTw; <0 (j=1,...,2N), F(zr41+av) < F(zita). (7)

comment:The last inequality holds when 0 < a < 2vTri4q /vT Av.
Restart the algorithm at Step 1 with

z) = Zp41 +av
as the initial point.
(b) CG-Algorithm for Least-Squares on S

comment:The algorithm follows from the preceding one, after observing that the new
functional to be minimized is

1
F(X) =3]I¥ - AX]?
1
-_-%XTA‘AX - XT(AY) + SV,
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where we are returning to our usual notation. The constraints are the same as before, (8).

Step 1. Select a point X; in S. Compute
Ri=Y-AX;, @ =AR=-F'(X)), ga=gi(X1) (i=1,...,2N).

If Q, =0, stop; algorithm terminates.
Else, let I be the set of indices, i, such that g;; = 0 (the ‘active set’), and go to Step 2.

Step 2. If I is empty, i.e., no constraints are active, let H be the identity matrix, and go
to Step 3.

Else, let H be the nonnegative symmetric matrix that annihilates the vectors, W;, i € I.

comment:This is the same matrix as above.

If H =0 go to Step 5, with X, playing the role of X;4;.
Else go to Step 3.

Step 3. CG-subroutine. Set

P1=61=HQ1- (a)
Starting with & = 1 compute
Q!
= =2k b
Si=AP, a AL (b)
0, iel
lik = {W.'Tpk, i ¢ I, (c)
Xevs =Xp+arPr, gin+1=gix+arlix (j=1,...,2N). (d)
If for some j ¢ I, gji+1 2> 0, go to Step 4. (e)
Else
Rits = Ry —axSi, Qa+1 = A*Rit1, Qryr = HQrta. (f)
If Quy1 =0, or k=N, go to Step 5. (9)
e 1@aal?
by = ——_'iﬂ—-, Py =5 + bi Ps. (k)
AR o

Replace k by k + 1 and go to (b).

comment: The definitions of ai, b force the orthogona‘lity conditions: 6{6,,_,,1 =
0, STSk41 = 0. This suggests that we monitor the iterates {Q,} for loss of orthogonality,

and restart when the condition @fﬁ,_”l > qaf,,,,ﬁkﬂ is satisfied, where ¢, = 0.2
(say). When this occurs, we set b, = 0 in (h), and then continue.
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Step 4. Scale back to the boundary of the feasible region and update the active
set. Let J be all indices j ¢ I, > gi,k+1 2 0. Let @; be the smallest of the ratios

aji = -‘I”i, jel.
7k

Reset

Xi=XetarP, Ri=Y-AX:, Qi=ARy, gn=gjr+alx, (F=1,...,2N).
Update the active set by adjoining to I all indices j ¢ I, 3 g;1 = 0. Then go to Step 2.
comment: Instead of scaling back to the boundary along the conjugate direction, we can
return to the boundary along the orthogonal direction from the current estimate point.

This seems to speed up the algorithm.

Step 5. If Qr+1 = 0, stop; algorithm is terminated.
Else select shortest V of the form

V =Qus1~ Y Wik, summed for all i € I with A; > 0. (i)

If V = 0, stop; Kuhn-Tucker conditions are satisfied, and algorithm is terminated at
minimum point of F on S.

Else, choose a > 0, such that
gik+1+aVIW; <0 (5 =1,...,2N), F(Xis1 +aV) < F(Xes1). (7)

comment:The last inequality holds when 0 < a < 2VT Q. /VTA*AV.
Restart the algorithm at Step 1 with

X: =Xpp1 +aV
as the initial point.

(c) Example Calculation

01 2
A=1|1 1}, A‘=[(1) ; }], Y=]0].
11 8

Then the solution of the normal equation

Let

. 2 2], L. [8
AAX=[2 3]X_AY-[10]

II.7




is X = [g] . The outer-normal vectors to the two-dimensional constraint region (which is

a square) are

—1 0 1
we[3] e[ 5] e fi]. m-f2)

. 0
Start with X] = (0] Then 91(X1) = 0, gz(X1) = 0, g;(Xl) = —1, g4(X1) = ~1.

Hence, the active index set is [ = (1,2), which means that the H matrix is the null-matrix.
The initial residual and gradient vectors are, respectively,

2 8
Bo=on Q’=A.R1=[1o]'
8

Enter 5: Minimize V with nonnegative A1, Az, where,
_| 8 -1 ol _[8+A
V= [10] —M [ 0 ] — s [-1] - [10+Az]'

Hence, \; = A2 =0,and V = [180] . Next, consider

g11+a[8 10][-01] =~82<0=>a>0

921 +a[8 10][_01 =~10a<0=2a>0

o

gs1+a[8 10][(1) =~1+482<0=2>a<1/8

941 +al8 10][2 =~-1+4+10a<0=2a<1/10

<_ 38 328
®>107+18° + 182 748

Thus, a = 0.1, and we leave step 5 with
0 0.8 0.8
X1 = [0] + [1.0] = [1.0]'
Enter step 1 with this value of X, and compute

e fo]-[2 3] 6ol 2]
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Enter step 3:

In = —2.4, 121 = 0, 131 = 24, 141 =0

_ 1. _[o8] 1[24] [20
X"X‘+§P“[1.o]+§[o]‘[m]'

1
912=-08+ 5(—2.4) =-2.0
1

922=-10+ 5(0) =-1.0

1
932=-02+ 5(2.4) =1.0

94,2 =0
Enter step 4:
a-E-mz I=(3,4
=34 =112 I=(3,49)
0.8 1 [24 1.0
X“g.o]*fz’ o]=[1o]
[ 2 0 17 r, 1
Ri=|o]-]1 1 1]: -2
| 8 1 1|t 6




Enter step 2:
00
#=[3 )

Enter step 5: Find smallest V with nonnegative A5, A, such that
_[4 1 0] _[4-2As
BRI H R Hevl]

Hence, \s =4, )y =5,and V = [g] Hence, stop with solution

4. Preconditioned Conjugate Gradients

The rate of convergence of the conjugate gradient method depends upon the condition
number of the matrix operator, 4. Hence, in order to speed up the convergence, we
precondition A. There are several ways to do this (see Allen Mclntosh, Fiiting Linear
Models: An Application of Conjugate Gradient Algorithms, New York: Springer-Verlag,

1982); we are going to consider only one method, scaling to produce columns of .4 that
are unit vectors.

Return to the basic equation

Y =AX
=ABB-'X (9)
=ABU,

where B is some invertible operator (matrix), and U = B~!X. B is chosen to improve the
condition number of A. We will take it to be a diagonal matrix, whose nth entry is the
reciprocal of the norm of the nth column of A.

We do not multiply A with B, because that would destroy the special convolutional
structure of A. We introduce a new operator, A’, which is the composition of B followed
by A. The adjoint of A’ is then A'"* = BTA*. Note that because B is diagonal, then
BT = B. In multidimensional problems, in which we don’t actually write out the operator
equations as matrix equations, we intrepret a “diagonal operator” to be an operator that
multiplies the nth component of the solution vector by the nth component of B.

The conjugate gradient algorithm remains unchanged, except that A is replaced by A'.
The solution, U, of the scaled equation is then unscaled to get the original solution: X =
BU. Keep in mind that this also introduces scaled bounds in the constrained conjugate
gradient algorithm for U. That is, if ¢* < z* < d*, then (c¢!/B*) < u* < (d'/B?).
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5. Conjugate Gradients with the Levenberg-Marquardt Parameter

In our discussion of deconvolution via Fourier transforms, we introduced a filter pa-
rameter, a, which smoothed the solution. Here, we introduce a similar parameter, A,
called a Levenberg-Marquardt parameter. We want to see how it enters into the conjugate
gradient algorithm.

We start with the augmented functional

I

FX) =5]lY — AXJF + 223X

XTAAX - XTA'Y + %uyu2 + %,\znxu’ (10)

DO = NI = DO =

XTA"AX = XTAY' + Y|,
where the augmented operator, A’, is defined by

Al = [;‘}] (11)

and the augmented right-hand side is

Y
e[ "
I'in (11) is the N x N identity matrix (where N is the number of unknowns), and the zero
vector in (12) is of length N.

The vectors in the conjugate gradient algorithm that are affected by these definitions
are S and Q. We define new vectors, S’ and @', in terms of the old ones by

! ! AP S
s-ap=[#]-[5], &
Q =-F'(X)=A"Y — (A" A+ 2})X
=A*R- NX (14)
=Q - \*X.

It is easy to see that ||S'||* = ||S||? + A?|| P2

We can use the Levenberg-Marquardt parameter ‘o solve a constrained least-squares
problem. First, let us approximate the cuboidal constraint set, that was defined in Section
3, by the inscribed hypersphere, whose center is at the centroid, X,, of the cuboid. Then
we replace the functional of (10) by

1 1
F(X)=3llY - AX|? + 54\’ X — X%, (15)
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which, under the change of variables, U = X — X, becomes
1 1
GU) = -2-”}’ - AX. - AU|* + -2-A2||U||2. (16)

Hence, the previous algorithm is unchanged, except that the inhomogeneous term, Y, in
(12) is replaced by Y — AX.,.

Now the question arises, how do we determine A? In a statistical approach to de-
convolution, A can be given in terms of signal-to-noise ratio, as is done in Chapter IX.
Without this data, however, we look for something else. In our discussion of decon-
volution via Fourier transforms, we showed that the smoothing parameter, a, could be
determined by solving a nonlinear equation, given certain prior information. We do some-
thing similar with the Levenberg-Marquardt parameter, but first we quote the following
theorem:(Charles L. Lawson and Richard J. Hanson, Solving Least Squares Problems, En-
glewood Cliffs: Prentice-Hall, Inc., 1974, p. 193)

Theorem. For a fixed nonnegative value of ), say, ), let X be the solution vector for the
problem of minimizing (10), and let @ = 1||Y — AX||>. Then Q1 is the minimum value of
3lY — AX||? for all vectors X satisfying || X || < || X].

The proof of this theorem is simple, and is given in Lawson and Hanson. The meaning
of the theorem is clear: Given the radius of the hypersphere constraint set (which follows
from the original hypercube constraint set), || X||, we minimize (10) by means of conjugate
gradients, for a collection of A’s. We choose that solution for which || X|| = || X||. This
yields the optimum A, and gives us the optimum, constrained, least-squares solution of

Y = AX.

This approach is equivalent to solving for A using a trial-and-error method. This is
inevitable when using conjugate gradients. If we were solving a much smaller problem, we
could determine the singular value expansion of A, and use that result in setting up an
analytic equation for A, which could then be solved using Newton’s method, as indicated
in Lawson and Hanson. It remains to be seen whether this approach is faster than that
which constrains each component of the solution vector individually.

There is a serious problem with this approack, however. The inscribed hypersphere in
N-dimensional space has a volume that is much smaller than the N-dimensional constraint
cuboid, when N is only reasonably large, whereas the circumscribed hypersphere has a vol-
ume that is much larger. Hence, using the inscribed hypersphere results in a very strong
(and undoubtedly incorrect) constraint, whereas using the circumscribed hypersphere re-
sults in a very weak constraint.
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APPENDIX A

Efficient Computation of Convolutions and Correlations

If we attempt to solve (1) using an iterative technique, such as the conjugate gradient
method, it will be necessary to evaluate the vector-matrix product many times. This is a
PQ-step operation, where P is the number of rows (equations), and Q is the number of
columns (unknowns) of the matrix T'. If the matrix is square, with dimension N x N, this

process can be reduced to N log, N operations by using the Fast Fourier Transform (FFT)
for evaluating discrete convolutions.

The appropriate theorems (in one dimension) that relate discrete Fourier transforms
and convolutions and correlations are ( <= denotes a discrete transform-pair):

i 9(j) < G(n)
h(j) <= H(n)

N-1

N-1
Then Iir‘ Y 90 + k)h(k) =% > a(k)h(k - 5)
k=0 k=0 (A-1)(a)
<= G(n)H(-n)

=G(n)H(N - n)
y N2 y N
& T oG +B) =35 Y ok~ )hCR)

k=0 k=0 (A.1)(b)
<= G(~n)H(n)

=G(N - n)H(n)
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1 N-1 1 N-1
~ 2 9k — k) == ) g(j — k)h(k)
N > (A1)
&> G(n)H(n),
where j =0,---,N -1, n=0,---,N ~ 1 in all of these. Several points should be made:

first note that correlation summing is not commutable, ard that one must use negative
frequencies in the discrete Fourier transform (which, of course, introduces the term N —n).

Let’s look at the matrix structure of convolution and correlation sums and see how
we can use FFT techniques to compute them. We’ll work in one dimension. Consider the
following convolution sum, which is written as a vector-matrix equation:

Yo my Mm-.; M_2 M_y i)
n = m, mo m.y m_2 z (A2)
v2 m; m mo m_; z32
Ys my m; m mo Ts

Rewrite this in the expanded form (padding with zeros to get a power of two) in order to
achieve a circulant-matrix:

R Fmg m_; m.z m_gs 0 my m; wm;] [20]

n m my m.; m_z m.y 0 my m; z)

Y2 m m; mpy m_; m_2 m.g O my z3

s{_|ms m m my m,; m.; m O T3 (A.3)
* 0 ms m3 m; My M.y Mm_3 m_g 0]’ )

* m_gs 0 ms ma m; mo m_1 Mm_2 0
* m_2 Mm_s 0 ms ma m, ™Mo m_) 0

. * J LT _1 M_3 M_3 0 ms ms m, my J L 0 )

where the * denotes a discarded entry. Hence, the sequences to be FFT’d are: (mg, m;,m,,
ms, 0’ m_s,m_z2, m—l) md (30, Z,,T2,2s, 0) 0’ 0’ 0)) a'nd the output sequence is (yO ' Y1,Y2,Vs,
#, %, % %). The order of the entries in the sequences is very important.

Now for correlations:

Yo mo my M2 My To
m; m3 ms m z
W = 1 2 t ] 4 1 ( A. 4)
Y2 m2 ms ™My Mg T2
Ys ms my M5 Mg 23

Rewrite this in the expanded form (padding with zeros to get a power of two) in order to
achieve a circulant-matrix:

" Yo 'mog my my my my msg mg 07 [2o]
v m m; my mg ms mg 0 mo| |z
y2 mg my mq mg mg 0 my my| |=2;
ys| _[ms my msg mg 0 mg m;y my| |2 (A.5)
«|  Ilmy msg mg 0 mog m;y my my 0]’
* ms mg 0 meg ™My M2 My My 0
* mg 0 me my my my my mg 0
[ » 0 mp my ma ms my my mel LOJ
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where the * denotes a discarded entry. Hence, the sequences to be FFT’d are: (mo, m;, m2,
ms, my, ms5, mg,0) and (zo,21,22,25,0,0,0,0), and the output sequence is (yo,v1,¥2,¥s,
», %, % %). The order of the entries in the sequences is very important, and also don’t forget
to negate the frequencies in the transform of the z-sequence.

To summarize: we expand the original data, padding with zeros, as necessary, to get
a circulant matrix, and then take FFT’s.

APPENDIX B
Bi-Conjugate Gradients

Let us consider the following equation,
AX =Y, (B.1)

where A is a known operator, X is the unknown, and Y is the known vector. For a
non-Hermitian operator, the conjugate gradient method solves the normal equation,

A*AY = A%Y, (B.2)

where A*® is the adjoint operator of A. It is noted that the condition number of the original
equation (B.1) is squared in the solution of (B.2). In the bi-conjugate gradient method, one
solves the non-Hermitian operator equation (B.1) directly. For this algorithm an additional
2N storage spaces is required, where N is the dimension of the unknown vector X.

Method of Solution

To solve (B.1), one starts with an initial guess, Xo, for X, and then defines the
residual Ry = Y_— AXjy, and an initial search direction Py = Ry. In parallel, we define
the bi-residual Ry = Rj and bi-directional P, = Py, where (*) denotes the complex
conjugate. In addition, we have a convergence parameter, e. Then for k = 1,2,..., if
Test= ||Re|l/||Y || < ¢, stop. Otherwise, update X; by the following steps:

Sy = AP, ; Si= A.E"
air = S&J_ELZ_ . b = <Ray1,Rag1>
k= s P> AT Y-
Xk.'.] = - Xk j‘ akPk - (B3)
Peyi=Ripn+0ePe 5 Py =Rina + 5P
Riyyi=Ri—arSk ;5 Rit1=Re—aiSe.

The scalar {a;} is chosen so0 as to force the bi-orthogonality conditions,
<§,.,Rm >=<R,.,§m >=0 ; 0<m<n<N,
and {b:} is chosen to force the bi-conjugacy conditions,
< Pn,Sm>=< Sn,Pm>=0 ; 0<m<n<N,
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provided that the algorithm does not break down; i.e., for all ¢ for which
<Si,P,>#0 ; <R,R;>+0.

The algorithm must terminate with R, = R, = 0 in at most N iterations. It is
important to point out that the bi-conjugate gradient algorithm does not minimize the
norm of the residual, ||R||, at each iteration. Nevertheless, if the algorithm does not break
down, it converges at a much faster rate than the normal conjugate gradient algorithm.
From our experience with large size and ill-conditioned operators, however, the bi-conjugate
gradient algorithm does seem to break down; (ie., | < S;,P;>| <6 ; |<Ri,Ri>|<
4, where § is a very small positve number), before it meets the convergence criteria.
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CHAPTER II11
RECONSTRUCTIONS USING SIMULATED AND LABORATORY DATA

1. Introduction

The goal of our work is to reliably reconstruct three dimensional flaws in workpieces
from emf measurements that are inherently noisy. First, though we tested the algorithm
using simulated data, that is, computer generated data. Through these tests, we were
able to learn how the conjugate gradient (CG) algorithm performs as a function of the
frequency range of the emf data and the degree of overdeterminedness of the system.
Also, the equations we are trying to solve are ill-conditioned and so we needed to know if
acceptable solutions could be expected using this form of the CG algorithm. The results
of the tests using simulated data are very encouraging. We also include some preliminary
results based on actual measured data.

2. Reconstructions Using Simulated Data

(a) Simulating the EMF Data

Two types of synthetic data were available. Since, in the fourier domain, we are
solving an equation of the form Az = B, we can provide a test solution z; and calculate
B, = Az,;. Then, using A and B;, we can try to reconstruct z, using the CG algorithm.
This type of synthetic data will be referred to as “exact” data.

Another type of synthetic data resulted from our model of the direct problem. In
the direct problem, we calculate emf data from a flaw definition and a transfer func-
tion derived from internal and external Green’s functions (see Chapter I). This transfer
function is discretized using the method of moments and becomes the operator A in
the inverse model. The discretization introduces error so that the emf calculated using
the direct model differs slightly from the emf calculated using the discrete operator A.
The difference between the two diminishes as more terms are used to approximate the
operator. This type of synthetic data will be referred to as “direct model” data.

All tests using simulated data used the “direct model” data.

(b) Material and Data Collection Parameters

The emf that is measured depends on the material parameters and and the parameters
of the data collection system. Figure 1 shows the typical arrangement of workpiece,
source (whip) and sensor. For the synthetic data tests the distances shown were as
follows.

Zoource = 0.0131in.

Zoensor = 0.019 in.

Zegturn = 0.273 in.
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The sensor consisted of ten square turns from 0.10 inch to 0.55 inch. The workpiece
was 0.11 inch thick. The conductivity tensor was (mhos/m)

104 0 0
0 10* O
0 0 1

This represents a graphite-epoxy composite material that is isotropic in-plane and essen-
tially nonconducting through its thickness.

Data measurements were simulated at each point of a 32 x 32 grid in the sensor plane
at a resolution of 0.1 inch. The thickness was discretized into four layers, each also a
32 x 32 grid. A test flaw, then, could be defined as a collection of “voxels” each with
dimension 0.1 x 0.1 x 0.0275.

(c¢) Convergence Test

A convergence test variable was defined in terms of the L; norms of the simulated
data and the residual. Specifically, at iteration i, the convergence test variable §; is

5, 1Y = 4xil,
7T,

where Y is the simulated emf data, X; is the flaw function at iteration ¢t and Y — AX; is
the residual.

(d) Test Set #1

A flaw in the shape of a cross was chosen as the standard test flaw. This test flaw
was placed in the center of each of the four layers (one at a time) and an attempt was
made to reconstruct the flaw from emf data. The conductivity was scaled so that flaw
locations had a value of 1 and host material locations had a value of 0. For ease of
reference, we will refer to a particular flaw using the word ‘flaw’ followed by digit(s)
indicating the layer(s) that contain the test flaw. This first test set, then, involves flawl,
flaw2, flaw3 and flaw4. Data was simulated at 5 frequencies: 1, 3, 5, 7 and 9 MHz. The
unconstrained version of the CG algorithm was used and the initial guess was no flaw,
that is, all zeroes.

The number of unknowns in this problem is 32 x 32 x 4 = 4096. Because the emf
data is complex and our solution (conductivity) is real, each set of emf data provides
2 x 32 x 32 = 2048 equations. For 5 sets of emf data and 4 layers, the overdeterminedness
of the system is 2.5.

The purpose of this set of tests was to determine the ability of the CG algorithm to
isolate the flaw to the proper layer. Also, we wanted to find out the effect of depth on
the convergence.

Figure 2 shows grayscale plots of the attempted reconstruction of flawl at four stages
during the iterative process: 100, 500, 1000 and 2048 iterations. Table 1 below shows
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the value of the convergence measure, §;, as well as the minimum and maximum values
of the solution for each layer.

Table 1
flawl Layer 1 Layer 2 Layer 3 Layer 4
Iterations & min | max | min | max | min | max | min | max
100 0.00397 | -0.270 | 1.343 | -0.068 | 0.142 | -0.118 | 0.025 | -0.074 | 0.053
500 0.00067 | -0.215 | 1.216 | -0.164 | 0.176 | -0.093 | 0.037 | -0.034 | 0.047
1000 0.00027 [ -0.293 | 1.300 { -0.170 { 0.171 | -0.065 { 0.044 { -0.050 | 0.027
2048 0.00011 | -0.350 | 1.364 | -0.156 | 0.139 | -0.044 | 0.050 | -0.037 | 0.036

Figure 3 shows three-dimensional plots of the solution after 2048 iterations. The
solution exhibits overshooting at the transition from host material to flaw. That is, near
the base of the flaw “tower” some values drop to -0.350 and at the edges of the top of
the “tower” some values reach 1.364.

Figures 4 through 9 are similar plots for flaw2, flaw3 and flaw4. Likewise, Tables 2
through 4 show the convergence measure and upper and lower limits of these solutions.

Table 2
flaw2 Layer 1 Layer 2 Layer 3 Layer 4
Iterations & min | max | min | max | min | max | min | max
100 0.00972 | -0.066 | 0.154 | -0.259 | 1.108 | -0.107 | 0.455 | -0.221 | 0.149
500 0.00166 | -0.165 | 0.166 | -0.257 | 1.220 | -0.154 | 0.333 | -0.152 | 0.086
1000 0.00079 | -0.170 | 0.165 | -0.192 | 1.258 | -0.158 | 0.248 | -0.175 | 0.131
2048 0.00036 | -0.155 | 0.133 | -0.136 | 1.232 | -0.191 | 0.239 | -0.182 | 0.111
Table 3
flaw3 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 6 mn | max | min | max | min | max | min | max
100 0.01762 | -0.120 | 0.026 | -0.108 | 0.456 | -0.152 | 0.615 | -0.120 | 0.472
500 0.00431 | -0.089 | 0.040 { -0.156 | 0.322 { -0.279 | 0.976 | -0.170 | 0.507
1000 0.00199 { -0.060 | 0.041 | -0.160 | 0.237 | -0.203 | 1.042 | -0.176 | 0.442
2048 0.00088 | -0.041 { 0.046 | -0.184 | 0.238 | -0.208 | 1.049 | -0.208 | 0.365
Table 4
flaw4 Layer 1 Layer 2 Layer 3 Layer 4
Iterations & min [ max | min | max | min | max | min | max
100 0.03249 | -0.066 { 0.048 | -0.219 | 0.141 | -0.114 { 0.470 | -0.199 | 0.668
500 0.00600 | -0.029 | 0.041 | -0.153 | 0.080 | -0.170 | 0.512 | -0.290 | 1.048
1000 0.00268 | -0.047 | 0.031 | -0.172 | 0.135 | -0.171 | 0.452 | -0.242 | 1.151
2048 0.00123 | -0.041 | 0.043 | -0.184 | 0.112 | -0.214 | 0.369 | -0.180 | 1.181
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The results of this first set of tests are encouraging. Flaw3 and flaw4 are more difficult
to isolate and this is to be expected. Figure 10 is a plot of the convergence measure, §,,
for the first 500 iterations. Notice that the deeper the flaw is, the slower the convergence
is. The “skin effect” phenomena suggests that the results should be better if some of the
data were taken at higher frequencies. With this in mind, more tests were performed.

(e) Test Set #2

The error in our solutions reported in the previous section was greatest in the layers
immediately adjacent to the layer that contained the flaw. The worst case for layer
discrimination, then, would seem to be having a flaw in layers 2 and 4. The error that
would appear in layer 3 may be large enough to lead us to believe that there is a flaw in
that layer also. We will call this flaw arrangement flaw24. First we tried to reconstruct
flaw24 using data taken at the same five frequencies as above (i.e, at 1, 3, 5, 7 and 9
MHz). The results are shown in Figures 11 and 12 and in Table 5.

Table 5
flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations &; min [ max | min | max | min | max | min | max

100 0.00992 | -0.048 | 0.142 | -0.221 | 1.096 | -0.198 | 0.927 | -0.166 | 0.639
500 0.00251 | -0.170 | 0.194 | -0.206 | 1.097 | -0.253 | 0.820 | -0.245 | 0.930
1000 0.00120 | -0.177 | 0.181 | -0.133 | 1.110 | -0.291 | 0.674 | -0.175 | 0.998
2048 0.00053 | -0.128 | 0.128 | -0.123 | 1.118 | -0.402 | 0.489 | -0.186 | 1.045

At 9 MHz, the skin depth of the workpiece is 0.066 inches or 2.4 times the layer
thickness. A second reconstruction was performed for flaw24 using data simulated over
a wider frequency range. The frequecies used were 1, 5, 10, 20 and 30 MHz. At 30 MHz,
the skin depth is 0.036 inches or 1.3 times the layer thickness. The results of this second
reconstruction are displayed in Figures 13 and 14 and in Table 6 below. As expected,
the higher frequency data improves the solution.

Table 6
“flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations 5 mn | max | min | max | min | max | min | max

100 0.02541 | -0.029 | 0.034 | -0.323 | 1.381 | -0.147 | 0.499 | -0.329 | 0.693
500 0.00452 | -0.062 { 0.065 | -0.210 | 1.270 | -0.184 | 0.308 [ -0.310 | 1.148
1000 0.00189 | -0.044 | 0.042 | -0.151 | 1.239 | -0.196 | 0.198 } -0.321 | 1.315
2048 0.00072 | -0.024 | 0.024 | -0.238 | 1.242 | -0.185 | 0.255 | -0.291 | 1.398

Earlier we noted that 5 sets of emf data made the system overdetermined by a factor
of 2.5. To see if additional data sets from the same frequency range would improve the
solution, we tried a third reconstruction using 9 sets of emf data (1, 2, 3, 4, 5, 6, 7, 8 and

I - 4

IINNNNNNNNNNNNNNN—_—————




9 MHz). This increased the factor of overdetermination to 4.5. The results are shown
in Figures 15 and 16 and in Table 7. Note that the results in Table 7 are essentially
identical to those in Table 5. The additional data sets may be important, though, when
data with noise is used.

Table 7
flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations & min { max | min | max { min | max { min | max

100 0.00953 | -0.048 | 0.146 | -0.219 | 1.088 | -0.199 | 0.932 | -0.165 | 0.647
500 0.00244 | -0.174 | 0.198 | -0.206 | 1.091 | -0.243 | 0.826 | -0.243 | 0.926
1000 0.00117 | -0.182 | 0.187 | -0.131 | 1.106 | -0.290 | 0.684 | -0.176 | 1.000
2048 0.00052 | -0.134 | 0.133 | -0.123 | 1.120 | -0.399 | 0.490 | -0.184 | 1.043

In Chapter II a method of constraining the solution was considered. A final recon-
struction was performed with all variables constrained to the interval [-0.0001,1.0]. The
results are shown in Figures 17 and 18 and in Table 8 below.

Table 8
~ flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations & min | max | min | max | min | max | min | max

100 0.1041 | -0.001 | 0.714 | -0.001 [ 1.000 | -0.001 | 1.000 | -0.001 | 1.000
500 0.1035 { -0.001 | 0.706 | -0.001 { 1.000 | -0.001 | 1.000 | -0.001 | 1.000
1000 0.1035 | -0.001 | 0.706 | -0.001 | 1.000 | -0.001 { 1.000 | -0.001 | 1.000
2048 0.0400 | -0.001 | 0.379 | -0.001 | 1.000 | -0.001 | 1.000 | -0.001 ] 1.000

These results are not very good compared to the unconstrained solutions we have gen-
erated. More work is needed in this area to determine whether our implementation
of constraints should be modified. The results are interesting in that the convergence
measure §; goes from 1.0 to 0.104 in about 100 iterations and then changes very lit-
tle through iteration 1460. Then, at some point between iteration 1460 and iteration
1470, a direction for significant improvement is found and the solution improves steadily
through iteration 1560 and then again little changes until some point between iteration
1960 and iteration 1970 when another “good direction” is found. Figure 19 is a plot of
§; illustrating this phenomenon. More work is needed to determine if convergence can
be speeded up for the constrained case.

To make sure that there is nothing fundamentally incorrect with the constrained CG
algorithm, we used the actual flaw as the initial guess. This guess would yield §,=0
and terminate the algorithm if we were using “exact” data. Since we are using “direct
model” data, though, our initial guess is not the best fit. Figures 20 and 21 and Table
9 show the results of this last run.
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Table 9
flaw24 Layer 1 Layer 2 Layer 3 Layer 4
Iterations & min | max | min | max | min | max | min | max

100 0.01504 | -0.001 } 0.116 { -0.001 | 1.000 | -0.001 { 0.275 | -0.001 | 1.000
500 0.01256 | -0.001 { 0.110 | -0.001 | 1.000 | -0.001 | 0.674 | -0.001 | 1.000
1000 0.01254 | -0.001 | 0.110 { -0.001 | 1.000 | -0.001 | 0.704 | -0.001 | 1.000
2048 0.01253 | -0.001 | 0.110 | -0.001 | 1.000 | -0.001 | 0.706 | -0.001 | 1.000

Notice that although some isolated points build up to help match the data, the flaw
locations from the initial guess are unaltered. Also, the convergence measure is much
smaller in Table 9 than than in Table 8. Hopefully this means that our previous test
(Figures 17 and 18) will eventually evolve (albeit slowly) to this same solution.

Post-processing Using Classification Theory

Returning to the unconstrained results, post-processing based on some classification
theory results seems to “clean up” the solutions. Using some of the solutions as a
“training set”, 0.23 was determined to be the optimum value for partitioning the data
into two classes, host material and flaw (see Chapter VI). If we filter our first test from
Test Set #2 by assigning 0 to all variables less than 0.23, we obtain the solution shown
in Figure 22.
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3. Some Preliminary Results Using Measured Data

Several tests that use actual measured data have been performed to validate the
model. Results of a few of those tests will be presented in the following.

A 0.11 inches-thick work-piece of graphite epoxy, in the form of woven fiber, has
been used for measurement in the laboratory. Holes at various depths have been drilled
into this workpiece, as shown in Figures 23-25. A multi-frequency measurement of the
work-piece has been performed, as explained in Chapter V. For the test, an algorithm
based on a ten-layer, five-frequency model has been chosen. Figures 26-30 show the plots

of the real and imaginary parts of the measured data, B, for the f~squencies of 2, 4, 8,
12 and 16 MHz.

In order to reconstruct the flaws from the measured data, a normalization process
is performed. First, the left hand side, Y, of equation (II — 1) is calculated by using
the flaw as the unknown X; these results are shown in Figures 31-35. Next, the real
and imaginary parts of the measured data, B, are normalized with respect to Y at each
frequency. This normalization procedure attempts to compensate for amplitude and
phase variations during the data acquisition. The sup-norm of the real and imaginary
parts of B, as well as Y, versus frequency are depicted in Figure 36. It is noted that the
real and imaginary sup-norms of B are greater than the real and imaginary sup-norms

of Y at all frequencies. The normalized value of B is then used to solve for the unknown
X of (II-1).

Figures 37-39 are samples of the real and imaginary parts of the 64 x 64 elements
of the operator, A, that appears in (II — 1), for different layers and frequencies. The
elements of the operator are highly localized around the origin, as indicated in Figures
37-39. This simply states that the coupling effect is localized in physical space.

Figures 40-42 show the results of the reconstruction of the flaw. The constraint
of positive conductivity is used; the Levenberg-Marquardt parameter is set to 1.5, the
number of iterations is 500 and the threshhold is 0.3. Figure 43 shows the flaw and
its reconstruction in gray scale. The flaws of layers two to six have been somewhat
reconstructed. Excessive noise is accumulated in layers one, two, seven and ten, which
makes the flaws somewhat unrealisable.

Although the reconstruction with actual data is not perfect at this preliminary stage,
it is very promising for further investigations. This shortcoming is in part due to the fact
that the theoretical model for this study is based on the Born approximation. For the
future study a more accurate and realistic model for reconstruction is proposed, which
is discussed in the following chapter.
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Figure 2

Reconstruction of flaw1
5 Frequencies: 1357 9 MHz
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Figure 3
3D Reconstruction of flaw1

5 Frequencies: 1357 9 MHz
2048 Unconstrained Iterations
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Reconstruction of flaw2
5 Frequencies: 13 57 9 MHz
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3D Reconstruction of flaw2
5 Frequencies: 1357 9 MHz
2048 Unconstrained Iterations
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Reconstruction of flaw3
5 Frequencies: 1357 9 MHz
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3D Reconstruction of flaw3

5 Frequencies: 1357 9 MHz
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Figure 11
Reconstruction of flaw24
5 Frequencies: 1357 9 MHz
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3D Reconstruction of flaw24

5 Frequencies: 13 57 9 MHz
2048 Unconstrained Iterations
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Reconstruction of flaw24
5 Frequencies: 1 5 10 20 30 MHz
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Reconstruction of flaw24
9 Frequencies: 1234567 89 MHz
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3D Reconstruction of flaw24
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Figure 17
Reconstruction of flaw24
S5 Frequencies: 1357 9 MHz
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3D Reconstruction of flaw24
5 Frequencies: 1357 9 MHz
2048 Constrained Iterations
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Figure 20

Reconstruction of flaw24
5 Frequencies: 1357 9 MHz
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3D Reconstruction of flaw
5 Frequencies: 1357 9 MHz
2048 Constrained Iterations
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Figure 22
Post-processed Solution
Threshhold = 0.23

- 29










Lager 9

1.90000 4

1,00000 -

8.00000 ~EH

Layer 10

2,00000

3,50000

9.00000 ~EEH

Figure 25: Ten layered graphite epoxy with some drill hole flaws in various
depths; layer 9 - layer 10.
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Figure 26: Real and Imaginary parts of the measured data, B, at 2 MHz.
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Figure 27: Real and Imaginary parts of the measured data, B, at 4 MHz.
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Figure 28: Real and Imaginary parts of the measured data, B, at 8 MHz.
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Figure 29: Real and Imaginary parts of the measured data, B, at 12 MHz.
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Figure 30: Real and Imaginary parts of the measured data, B, at 16 MHz.
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Figure 31: Real and Imaginary parts of the measured data, Y, at 2 MHz.
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Figure 32: Real and Imaginary parts of the measured data, Y, at 4 MHz.
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Figure 33: Real and Imaginary parts of the measured data, Y, at 8 MHz.
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Figure 34: Real and Imaginary parts of the measured data, Y, at 12 MHz.
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Figure 35: Real and Imaginary parts of the measured data, Y, at 16 MHz.

III - 42




——————

(X107

4.0 4

3.0

.50 1

SupNorm Diagram

00 T

2.0 4.0 8.0 12.0 16.0
Frequency (MHz)

Figure 36: The sup-norms of the real and Imaginary parts of B and Y.
+ 4 are real and imaginary sup-norms of B;*,o, are real and imaginary
sup-norms of Y respectively.
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Figure 37: The element of the operator A for the layer 1 at the frequency
2 MHz.
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Figure 38: The element of the operator A for the layer 2 at the frequency
4 MHz.
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Figure 39: The element of the operator A for the layer 3 at the frequency
8 MHz.
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Figure 40: Reconstruction of the flaw; Levenberg-Marquardt parameter is
1.5, the number of iterations is 500 and the threshold value is 0.3; layer 1
- layer 4
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Figure 41: Reconstruction of the flaw; Levenberg-Marquardt parameter is
1.5, the number of iterations is 500 and the threshold value is 0.3; layer 5
- layer 8
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Figure 42: Reconstruction of the flaw; Levenberg-Marquardt parameter is

1.5, the number of iterations is 500 and the threshold value is 0.3; layer 9
- layer 10
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Figure 43: Gray scale of the flaw and its reconstruction; first two rows is
the actual flaw, and second two rows are the reconstruction.
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CHAPTER 1V
RIGOROUS FORMULATION OF THE INVERSE PROBLEM

1. Introduction

Throughout this report we have simplified the model by approximating the anomalous
current density, J(®) = 5(°) . E, as J(¢) = 5(9). Ey, where Ej is the incident electric field
produced by the whip (or any other source) in the absence of the flaw. This approximation
linearizes the problem, and obviously simplifies the task of inversion. Nevertheless, the true
problem is nonlinear, because it involves the product of two unknowns, 5*) and E.

In our earlier work in eddy-current inversion we solved the nonlinear problem by re-
sorting to a package of nonlinear equation-solvers, called MINPACK. In addition, we used a
variable-metric, nonlinear-programming package, called VMCON, in an attempt to satisfy
constraints. These worked well for rather small problems, but for the three-dimensional
problems that we are currently addressing, it becomes necessary to use storage-efficient
algorithms that allow us to take advantage of special structures of our matrices, such as
convolution. Hence, we will go back to the rigorous problem to see how it might be attacked
in the light of what we now know about iterative algorithms for solving large problems.
There should be no doubt, however, that the rigorous solution of a large nonlinear problem
will be time-consuming.

2. The Nonlinear Coupled Integral Equations

Let region 1, where the excitation source and sensors are located, be above the slab,
and region 2 be the slab, which contains the anomaly. Assume that we measure the
magnetic induction field, B, from which we compute EMF’s in the usual way. Then the
appropriate pair of coupled integral equations is

E(r) =EO(r) + / G (r|r') - 3)(r')dr!
flaw

=EO(r)+ [  GYI(rr!)- 5)(r") - E(r")dr' (1)
Slew
B(r) — B(r) =pq / G™(rlr') - 59 (r') - B(r')dr.
Slaw

The superscripts on the Green’s functions denote their type, the first denoting the type of
field (electric or magnetic), and the second the type of current source (electric or magnetic),
whereas the subscripts denote the regions which are coupled by the Green’s function; the
first subscript denotes the region which contains the field point, and the second the region
that contains the source point. The superscript, (0), on E or B denotes the incident field,
which is the field that exists in the presence of the slab without the flaw. The left-hand
side of the second equation is integrated over the sensor coil to give the measured EMF.

This system is nonlinear (or, more precisely, bilinear) because of the presence of the
product 5*)(r') - E(r'). We have been linearizing the problem by replacing E(r') in the
second equation by E(°)(r'), and then ignoring the first equation.
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To solve this system, we first discretize it in the usual way by means of the method of
moments, and then apply an iterative technique to the resulting algebraic equations. The
iterations start by replacing E in the second equation by E(°), and then solving for 5(2)
by using one of the iterative methods just described. This step uses measured data, and
is the ‘inverse’ phase of the problem.

Once we have an accepiable approximation to 5(*), we substitute it into the first
of (1) and solve the resulting ‘direct problem’ for an improved version of E, the electric
field within the flawed region. This step will usually converge more rapidly than the
inverse phase because the equations are better conditioned. We can use the same iterative
technique here that was used during the inverse phase.

The result of the direct phase is then substituted into the second equation, and the
second-level inverse problem is solved. The process is continued until the error in the
solution is of the order of the error in the measured data.

The process that we have just suggested may not be the most efficient way to solve

system (1). We will look at conjugate gradients, and see how to handle the nonlinearity
there.

Keep in mind that if we use multifrequencies on this problem, a number of distinct
incident fields and Green’s functions will have to be computed and stored, one for each

frequency. Because of the convolutional nature of the problem, however, we will be able
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